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The dynamic interplay between the core and the edge plasma has important consequences in
the confinement and heating of fusion plasma. Recycled neutrals are produced at the plasma-
material interface, which then travel through the Scrape-Oft-Layer (SOL) into the core and
serve as a major source of plasma fueling. Similarly, fast ions produced by either neutral
beam injections (NBI) or fusion reactions typically have drift orbits that extend into the SOL
and Larmor orbits comparable to the SOL width. The confinement of these particles will be
influenced by both the core and the SOL, and has important consequences on the core plasma
heating and confinement. In order to self-consistently study these coupled effects, a workflow
has been developed to couple a reduced SOL model into the core transport solver TRANSP
[1, 2]. A semi-structured SOL grid is generated at each time step, upon which a 2-D profile of
the SOL plasma is solved with a combination of the heuristic drift and the modified 2-point
model [3, 4]. The SOL model is then coupled to the neutral transport solver DEGAS2 [5] to
calculate the neutral transport. A new particle tracing algorithm has also been developed to
extend the NBI module NUBEAM into the SOL [6, 7, 8]. These new capabilities will be
demonstrated with simulations performed using NSTX/NSTX-U plasma profiles, where the
calculated SOL plasma and neutral profiles as well as fast ion distributions will be compared

with experimental measurements.
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